2-D FINITE ELEMENT ANALYSIS AND OPTIMIZATION OF TEMPORARY STEEL STRUCTURE COVERING LARGE SPAN

¹Chirag Javiya, ²Satyen Ramani

¹Post Graduate Student, ²Associate Professor Department of Civil Engineering SAL Institute of Technology and Engineering Research, Ahmedabad

Abstract— Temporary steel structures are commonly used at various locations, with advantages on repeat construction, simple structure and light weight. For temporary steel structure there are not enough researches on the Finite element analysis and optimization. Finite element analysis of temporary steel structure by ANSYS[®] Workbench was proposed in this paper. Using this method various models of temporary steel structures for 25m span length were analyzed. The calculation results of objective and constrain conditions were obtained and discussed.

Index Terms—FEM, Temporary steel structure, optimization, ANSYS[®] Workbench

I. INTRODUCTION

Temporary structures defined here are those with short service lives. As their name suggests, they are subjected for a temporary function. They are usually made from lightweight components and are used for a wide variety of functions at private and public events. Temporary structures such as exhibitions, musical concerts, social occasions, scaffolds, shelters, tents, sporting events and facilities used during the reconstruction or repair of buildings and bridges, etc., are usually constructed for a limited-time use. Although the design of such structures to live and dead loads usually does not impose any particular challenge, their design for wind load requires more careful investigation. This is due to the fact that service life of a temporary structure is much shorter than a "permanent structure," and as such, the probability of load exposure to the temporary structure is substantially less.

The advantages of temporary steel structure is economical, easy dismantle and can use for repeat construction. The temporary structure can repeat construct and demolition with compare to the traditional temporary building. Recently, many reports can be read about temporary structure accidents, caused by wind.

Optimization is the act of obtaining the best result under given circumstances. In design, construction, and maintenance of any engineering system, engineers have to take many technological and managerial decisions at several stages. The ultimate goal of such decisions is either to minimize the effort required or to maximize the desired benefit. Optimization can be defines as the process of finding the conditions that give the maximum or minimum value of a function.

In structural optimization, design objectives are structural criteria used to evaluate the merit of a design such as minimum construction cost, minimum life-cycle cost, minimum weight, and maximum stiffness. IS (Indian standards) code provision, which provides safety and serviceability requirements to the structure, usually appear as the design constraints.

Finite Element Analysis is a good technique for the structures where the direct analysis is not possible.

ANSYS[®] Workbench is handy software for the FEM study. In ANSYS[®] Workbench project section various tools as Geometry, Static Structure, Modal, Parameter, Design of experiments, Response surface and optimizations etc. are available. In this paper the FEM study using ANSYS[®] Workbench was done for Temporary steel structure for various configuration and the comparison were carried out.

II. MODELLING AND LOADING

For the accurate analysis, the general purpose Finite Element Software ANSYS[®] Workbench is used. The Highlights and details for modeling and Load application are explained here.

LOADING: DEAD LOADS

DEAD LOADS

Dead loads are calculated by the IS-875(part- I)

Weight of roofing material = 0.131 KN/m^2 (clause-2.1, Table-1)

Weight of purlin = 0.125 KN/m

Self weight of the structure

LIVE LOADS

Live loads are calculated by the IS-875(part- II) Live load = 0.75 KN/m^2 (clause-4.1, Table-2)

WIND LOADS

Wind loads are calculated by the IS-875(Part-III) by profile co-efficient method (clause-6.2, Table-4 & Table-5) Location - Ahmedabad

Risk coefficients factor $(k_1) - 0.92$ m/s for temporary structure with design life of five year (Table-1)

MODELING:

ANSYS[®] Workbench provides very efficient interaction flowchart between several CAD design modules including geometry import from many supporting CAD design software with meshing import facility. Models for temporary steel structure have been developed with different span length, typical panel length and angle of truss bracing.

April 2017, Volume 4, Issue 04

ANSYS[®] Workbench project schematic shown below can be developed for the analysis. General steps are as follows:

- Step-1: Preparation of Geometry
- Step-2: Meshing
- Step-3: Boundary Conditions and Load Application
- Step-4: Solutions and Results
- Step-5: Parameter set
- Step-6: Response surface optimization

Fig.1: - Schematic chart of work

Basically, we can create required geometry in design modeler with more than one alterative, but it consume more time so to overcome this difficulty there is a option of 'run JAVA script file (JS)', by using this method we can develop the whole geometry within a single click and the properties are given by grouping of members. This generally affects our output either in terms of output quantity values or in terms of required computational time.

PROBLEM DATA:

As described, the goal of the study is to optimize the weight of the structure on various structural analysis output quantities such as displacements and Normal stress. Where the criteria of the Displacements and Normal stress are as per IS: 800(2007).

Vertical displacement – span/180 (Table – 6, clause no. 5.6.1) Lateral displacement – Height/150 (Table – 6, clause no. 5.6.1)

Normal stress – As per IS 800(2007)

We have considered here 6 models for 25m Length of spans (outer to outer of the column) for the analysis as per following section properties and structure configuration:

Table1: - configuration of the models									
Span(L)	25(m))							
Typical panel length	L/30			L/35					
Angle of truss bracing	20'	30'	40'	20'	30'	40'			

Table 2: - cross – sectional properties of the circular hollow section (CHS)										
NAME	OD(mm)	$T_w(mm)$	$Ax(cm^2)$	$I(cm^4)$	$Z(cm^3)$	$C(cm^3)$	r _y (cm)			
21.3x2 CHS	21.3	2	1.21	0.57	0.75	0.11	0.231346335			
21.3x2.6 CHS	21.3	2.6	1.53	0.68	0.92	0.13	0.252685111			
21.3x3.2 CHS	21.3	3.2	1.82	0.77	1.06	0.14	0.268887466			
26.9x2.3 CHS	26.9	2.3	1.78	1.36	1.4	0.2	0.317986229			
26.9x2.6 CHS	26.9	2.6	1.98	1.48	1.54	0.22	0.331718517			
26.9x3.2 CHS	26.9	3.2	2.38	1.7	1.81	0.25	0.355519412			
33.7x2.6 CHS	33.7	2.6	2.54	3.09	2.52	0.37	0.428232168			
33.7x3.2 CHS	33.7	3.2	3.07	3.6	2.99	0.43	0.462222729			
33.7x4 CHS	33.7	4	3.73	4.19	3.55	0.5	0.498662901			
42.4x2.6 CHS	42.4	2.6	3.25	6.46	4.12	0.61	0.552011758			
42.4x3.2 CHS	42.4	3.2	3.94	7.62	4.93	0.72	0.599528116			
42.4x4 CHS	42.4	4	4.83	8.99	5.92	0.85	0.651196287			
48.3x2.9 CHS	48.3	2.9	4.14	10.7	5.99	0.89	0.665630665			
48.3x3.2 CHS	48.3	3.2	4.53	11.59	6.52	0.96	0.692760553			
48.3x4 CHS	48.3	4	5.57	13.77	7.87	1.14	0.755106837			

The ANSYS® WORKBENCH project schematic is prepared to carry out interconnected several type of analysis simulation related to static structural analysis and modal analysis. Fig.2 and Fig.3, represents the typical meshing and boundary conditions applied for each of modal study.

III. RESULTS AND COMPARISION

Several output predefined quantities are readily available in ANSYS results tabs within each simulating analysis type. The main focus was the Total Deformation, Directional Deformation, Axial forces and Normal Stress. Here the normal stress can be calculated by the equation of $(\sigma = P/A)$ in the parameter set. In initial phase one model was solved for different load combination and the governing case is taken further for all models. The various graph plotted for the above solutions and the results of different load combinations are shown below:

X Axis - Directional Deformation Type: Directional Deformation(X.Aii) Unit: mm Global Coordinate System Time: 1 4/23/2017 1L39 PM 7.1503 Max 6.3551 5.5599 4.1647 3.6955 3.1742 2.379 1.588 0.78661 -0.0066056 Min	Y Axis - Directional Deformation Type: Directional Deformation(Y Axis) Unit mm Global Coordinate System Time: 1 4/23/2017 1L43 PM 0.20615 Max -2.6508 -5.5238 -8.3087 -1L254 -14.119 -16.984 -2.7.14 -2.579 Min
Fig.9: - X-axis Directional Deformation	Fig.10: - Y-axis Directional Deformation
77 Journal of Emerging Technologies and	I Innovative Research (JETIR) www.jetir.org

336

/pe: Directional Axial Force (Unav hit: N	eraged)(X Axis)
lution Coordinate System	
me: 1	
73/2017 11:55 PM	
Here and the second sec	Min
- 25401 Max	
19637	
13052	
13005	
8093.1	
2323.6	
- 3445.9 🔀	
9215.3 🔀	
-14985 🖂	
-20754	
26524 54	

Fig.11: - Axial forces

> The results obtained are as follows:

Table 3: - results

Load combination	DL+LL	DL+LL+WL1	DL+LL+WL2	DL+WL1	DL+WL2
Total def. max(mm)	25.21	6.77	26.17	10.37	11.73
Total def. min(mm)	-25.21	0	0	0	0
X - Dir. min(mm)	-2.12	-4.07	0	-4.28	0
X - Dir. max(mm)	-2.00	0	7.15	0.013	3.7
Y - Dir. max(mm)	0.02	0.15	0.21	9.67	0.08
Y - Dir. min(mm)	-25.2	-5.6	-25.57	-0.16	-11.32
Axial force max(N)	16528	4724	25401	8048	8692
Axial force min(N)	-17945	-58 <mark>17</mark>	-26524	-7462	-9957
Axial stress max(N/mm ²)	40	11.41	61.35	19.44	21
Axial stress min(N/mm ²)	-43.35	-14.15	-64.07	-18.03	-24.05

Design of experiments: For particular size of the tube, it is necessary to input the dimension of the tube manually by using 'CUSTOM' method in Design of experiments by giving them upper bound and lower bound limits. 'Design Points vs. Parameter' graph shows the variation of the results.

					_
Outline	of Schematic B2: Design of Experiments	· ·	Р	×	
	А	в	L	-	
1		Enabled			
2	Design of Experiments				
3	Input Parameters			н	
4	🖃 🚾 Static Structural (A1)				
5	P47 - CircularTube1_Plane.Ri	V			
6	🗘 P48 - thick1	V			
7	🗘 P49 - CircularTube2_Plane.Ri	V			
8	🗘 P50 - thick2	V	1		
9	🗘 P51 - CircularTube3_Plane.Ri	V			
10	🗘 P52 - thick3	V			
11	🗘 P53 - CircularTube4_Plane.Ri	V	1	Ξ	
12	🗘 P54 - thick4	V	1	н	
13	Output Parameters			н	
14	🖃 🚾 Static Structural (A1)				
15	P20 - Total Deformation Minimum				
16	P19 - Total Deformation Maximum				
17	P15 - X Axis - Directional Deformation Minimum				
18	P16 - X Axis - Directional Deformation Maximum				
19	P17 - Y Axis - Directional Deformation Maximum		1		
20	P18 - Y Axis - Directional Deformation Minimum				
21	P40 - Geometry Mass				
22	P56 - Axial Force 4 Minimum				
23	P57 - Axial Force 3 Minimum				
24	P58 - Axial Force 2 Minimum				
25	P59 - Axial Force Minimum				
26	P27 - area 1				
27	P38 - stress truss top			-	1

Fig 12: - Design of experiments

Response surface: By using 'KRIGING' method in response surface, the 3-D schematic chart between various input and output parameter can be obtained. The 'Goodness of fit' represents accuracy of the results. 'Local sensitivity' represents the relation between input and output parameter in terms of factor.

Table-4									
3-D response surface graphs									
	Horizontal – 1 axis	Horizontal – 2 axis	Vertical – 3 axis						
Fig14	Circular tube 1	Thickness 1	Total deformation 1						
Fig15	Circular tube 2	Thickness 2	Total deformation 2						
Fig16	Circular tube 3	Thickness 3	Total deformation 3						
Fig17	Circular tube 4	Thickness 4	Total deformation 4						

Table of	Outline A34: Goodness Of Fit											
	A	В	с	D	E	F	G	н	Ι	J	К	L
1	Name	P20 - Total Deformation Minimum	P19 - Total Deformation Maximum	P15 - X Axis - Directional Deformation Minimum	P16 - X Axis - Directional Deformation Maximum	P17 - Y Axis - Directional Deformation Maximum	P18 - Y Axis - Directional Deformation Minimum	P40 - Geometry Mass	P56 - Axial Force 4 Minimum	P57 - Axial Force 3 Minimum	P58 - Axial Force 2 Minimum	P59 - Axial Force Minimum
2	Goodness Of Fit											
3	Coefficient of Determination (Best Value = 1)	** 1	** 1	** 1	** 1	** 1	** 1	** 1	👬 1	** 1	👬 1	** 1
4	Maximum Relative Residual (Best Value = 0%)	🔆 0	🔆 0	🔆 0	🔆 0	🔆 0	🔆 0	🔆 0	🔆 0	🔆 0	🔆 0	🔆 0
5	Root Mean Square Error (Best Value = 0)	0	1.786E-06	1.5456E-09	6.6669E-07	2.5535E-08	1.7281E-06	5.358E-07	0.0079968	0.0026938	0.0064428	0.0071655
6	Relative Root Mean Square Error (Best Value = 0%)	🔆 0	🔆 0	۰ 🔆	۰ 🔆	🔆 o	🔆 0	🔆 0	🔆 0	۰ 🔆	🔆 0	🔆 0
7	Relative Maximum Absolute Error (Best Value = 0%)	🔆 0	۰ 🔆	۰ 🔆	۰ 🔆	۰ 🔆	🔆 o	۰ 🔆	۰ 🔆	🔆 o	🔆 0	🔆 0
8	Relative Average Absolute Error (Best Value = 0%)	🔆 0	🔆 o	۰ 🔆	۰ 🔆	۰ 🔆	🔆 0	🔆 0	۰ 🔆	🔆 o	🔆 0	🔆 o
9	Goodness Of Fit for Verification F	Points										
10	Maximum Relative Residual (Best Value = 0%)	🔆 o	۰ 🔆	۰ 🔆	۰ 🔆	۰ 🔆	۰ 🔆	۰ 🔆	۰ 🔆	۰ 🔆	🔆 o	۰ 🛧
11	Root Mean Square Error (Best Value = 0)	0	1.7717E-06	1.4829E-09	6.4584E-07	2.5704E-08	1.7211E-06	5.5095E-07	0.009386	0.002905	0.0074886	0.0079628
12	Relative Root Mean Square Error (Best Value = 0%)	🔆 0	۰ 🔆	۰ 🔆	۰ 🔆	🔆 o	🔆 0	۰ 🔆	🔆 0	۰ 🔆	🔆 0	🔆 0
13	Relative Maximum Absolute Error (Best Value = 0%)	🔆 0	🔆 0	۰ 🔆	۰ 🔆	🔆 o	۰ 🔆	۰ 🔆	🔆 0	۰ 🔆	🔆 o	🔆 0
14	Relative Average Absolute Error (Best Value = 0%)	🔆 0	🔆 0	۰ 🔆	۰ 🔆	۰ 🔆	۰ 🔆	۰ 🔆	• 🔆	۰ 🔆	🔆 0	۰ انگر

Fig 19: - Goodness of fit

Optimization: By using **Multi Objective Genetic Algorithm**(**MOGA**) method of optimization, the design points updated from the response surface should be optimized by selecting the objective function as weight, that is to be minimized and the constraints conditions such as Total deformation, Directional deformation and Normal stress by applying the limits. The graph clearly shows the optimized variation of the weight of the structure. The results of six models as per the Table: - 1 is shown below.

JETIR1704077 Journal of Emerging Technologies and Innovative Research (JETIR) <u>www.jetir.org</u>

Fig 20: - Design of experiments

	Table 5: - optimized results													
Panel	Bracing	Tube1	Tube2	Tube3	Tube4	T1	T2	T3	T4	Area1	Area2	Area3	Area4	
length	angle	(Ri)	(Ri)	(Ri)	(Ri)									
		mm	mm	mm	mm	mm	mm	mm	mm	mm^2	mm^2	mm^2	mm^2	
	20'	18.3	8.9	10.7	8.8	2.3	2.0	3.2	2.0	280	127	247	124	
	30'	11.6	9.2	9.6	9.2	2.6	2.0	2.3	2.0	208	129	155	129	
L/30	40'	11.4	8.9	9.6	8.9	2.5	2.1	2.2	2.0	199	129	150	127	
	20'	14.8	9.2	9.2	8.8	2.0	2.2	2.2	2.2	203	146	140	134	
	30'	8.9	8.9	9.1	9.3	2.2	2.0	2.0	2.0	135	125	130	129	
L/35	40'	8.8	8.9	9.2	8.9	2.2	2.1	2.1	2.1	134	129	134	128	
			7 12											

		Mass	Total	X-axis	Y-axis	stress	stress	stress	stress
Panel	Bracing		deformation	deformation	deformation	column	column	truss	truss
length	angle		Max.	Max.	Min.	bracing	top	bracing	top
		Tone	mm	mm	mm	N/ mm ²	N/ mm ²	N/ mm ²	N/mm ²
	20'	0.412	58	13	-57	-27	-65	-58	-79
	30'	0.354	38	13	-37	-27	-80	-74	-76
L/30	40'	0.348	37	14	-36	-21	-84	-75	-78
	20'	0.329	62	21	-59	-31	-89	-111	-119
	30'	0.297	51	24	-46	-29	-122	-93	-126
L/35	40'	0.314	42	22	-38	-26	-120	-80	-105

[Here (-ve) deformation indicate vertical downward deformation and (-ve) stress indicate compressive value]

IV. CONCLUSION:

Results show the optimized weight and various constrains in ANSYS[®] Workbench. The weight obtained in ANSYS[®] by using Response surface optimization toolbox is optimized successfully for the proposed models and the deflection and stress criteria are satisfied. It has been concluded that the optimization by using Response surface optimization toolbox gives more reliable and satisfying results. Hence it is advantageous to use this method for different varieties and configuration of the structure.

V. REFERENCES:

- [1] Zheng Zhang, Xuefeng Cai: Finite Element Analysis on Frame Structure of Light Steel Temporary Buildings. Applied Mechanics and Materials Vols 351-352 (2013) pp 808-811 Trans Tech Publications, Switzerland
- [2] Fankui Zeng, Changming Hu: Design Method of the Temporary Support Structure in Building Construction. Advanced Materials Research Vols 163-167 (2011) pp 406-409 Trans Tech Publications, Switzerland
- [3] Michalis Fragiadakis, Nikos D. Lagaros, Manolis Papadrakakis: Performance-based multi-objective optimum design of steel structures considering life-cycle cost © Springer-Verlag 2006
- [4] Nikolaos D. Lagaros, Manolis Papadrakakis: Structural optimization using evolutionary algorithms © 2002 Elsevier Science Ltd.
- [5] IS 800: 2007, IS: 875 (Part 1) 1987, IS: 875 (Part 2) 1987 and IS: 875 (Part 3) 1987